| UK | |--| | West Fraser Europe nv | | Eikelaarstraat 33 | | 3600 Genk | | Belgium | | DoP ref: UKOSB4DoPv1 | | EN 13986:2004 +A1:2015 | | 0836 | | 21 | | E1 | | OSB/4 (EN300) 6mm to 32mm | | SterlingOSB zero, OSB 4 | | Heavy duty; structural use in humid conditions | | Essential characteristics | Performance | | | | | | | | |---|---|------|------------|------|----------|------|-----------|-----| | Thickness range (mm) | 6 to 10 | | >10 to <18 | | 18 to 25 | | >25 to 32 | | | | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | | ¹ Characteristic Strength (N/mm ²): | | | | | | | | | | - Bending f_m | 24.5 | 13.0 | 23.0 | 12.2 | 21.0 | 11.4 | NPD | NPD | | - Compression f_c | 18.1 | 14.3 | 17.6 | 14.0 | 17.0 | 13.7 | NPD | NPD | | - Tension f_t | 11.9 | 8.5 | 11.4 | 8.2 | 10.9 | 8.0 | NPD | NPD | | - Panel Shear $f_ u$ | 6.9 | | 6.9 | | 6.9 | | NPD | | | - Planar shear f_r | 1.1 | | 1.1 | | 1.1 | | NPD | | | ¹ Mean Stiffness (MOE) (N/mm ²): | | | | | | | | | | - Tension E_t | 4300 | 3200 | 4300 | 3200 | 4300 | 3200 | NPD | NPD | | - Compression <i>E_c</i> | 4300 | 3200 | 4300 | 3200 | 4300 | 3200 | NPD | NPD | | - Bending E _m | 6780 | 2680 | 6780 | 2680 | 6780 | 2680 | NPD | NPD | | - Panel Shear <i>G</i> ν | 1090 | | 1090 | | 1090 | | NPD | | | - Planar Shear <i>G</i> , | 60 | | 60 | | 60 | | NPD | | | Punching Shear, Characteristic | | | | | | | | | | strength under point load F _{max,k} | NPD | | NPD | | NPD | | NPD | | | (kN) (for floors and roofs) | | | | | | | | | | Punching Shear, Mean stiffness | | | | | | | | | | under point load, R (N/mm²) | NPD | | NPD | | NPD | | NPD | | | (for floors and roofs) | | | | | | | | | | Characteristic serviceability | | | | | | | | | | strength under point load F _{Ser,k} (kN) | NI | PD | NPD | | NPD | | NPD | | | (for floors and roofs) | | | | | | | | | | Soft Body Impact resistance | NPD | | NPD | | NPD | | NPD | | | (Floor/roofs/Walls) | 1110 | | | | <u> </u> | | | | | Racking resistance | N.11 | 20 | | DD. | | DD. | | NDD | | Characteristic Strength F _{Rd,max,k} (N) (for walls) | NPD | | NPD | | NPD | | NPD | | | Racking resistance | | | | | | | | | | Mean Stiffness R _{mean} (N/mm) | NPD | | NPD | | NPD | | NPD | | | (for walls) | | | | | | | | | | ⁵ Embedment strength f _h (N/mm²) | Calculation according to EN 1995-1-1 (8.22) | | | | | | | | | Release of formaldehyde | E1 | | E1 | | E1 | | E1 | | | Release (content) of pentachlorophenol (PCP) | ≤5ppm | ≤5ppm | ≤5ppm | ı | ≤5ppm | | |--|------------------------------|--------|-------------|------------|---------------|--| | Airborne sound insulation (surface mass) R (dB) | NPD | NPD | NPD | | NPD | | | ³ Sound absorption, Frequency range 250Hz to 500Hz (α) | 0.1 | 0.1 | 0.1 0.1 | | 0.1 | | | ³ Sound absorption, Frequency range 1000Hz to 2000Hz (α) | 0.25 | 0.25 | 0.25 | | 0.25 | | | Thermal conductivity λ (W/m.K) | 0.13 | 0.13 | 0.13 | | 0.13 | | | Air Permeability (Δp=50Pa) according to EN 12114, V ₀ (m³/h m²) | NPD | NPD | NPD | | NPD | | | | | Durabi | lity | | | | | Internal bond (N/mm²) | 0.50 | 0.45 | 0.40 | | 0.35 | | | Swelling in thickness (%) | 12 | 12 | | | 12 | | | Moisture resistance Internal bond after boil test (%) | NPD | NPD | NPD NPD | | NPD | | | Internal bond after cyclic test (N/mm²) | NPD | NPD | NPD NPD | | NPD | | | Bending strength after cyclic test – major axis (N/mm²) | 15 | 14 | 14 13 | | 6 | | | ⁴ Mechanical
(Creep k _{def})
service class 1 | 1.5 | 1.5 | 1.5 | | 1.5 | | | ⁴ Mechanical
(Creep k _{def})
service class 2 | 2.25 | 2.25 | 2.25 | | 2.25 | | | Mechanical (Duration of load k _{mod}) | Action Mode | | | | | | | | Permanent Long Term Medium T | | Medium Term | Short Term | Instantaneous | | | ⁴ Service Class 1 | 0.4 | 0.5 | 0.7 | 0.9 | 1.1 | | | ⁴ Service Class 2 | 0.3 | 0.4 | 0.55 | 0.7 | 0.9 | | | Biological | Use classes 1 & 2 | | | | | | | Thickness range (mm) | 6 to 10 | >10 to <18 | 18 to 25 | >25 to 32 | | |----------------------|---------|------------|----------|-----------|--| | Avg. Dens. (kg/m³) | >= 650 | | | | | | | Watervapourtransmission according to EN 12572:2001 | | | | | |----------------|--|--|--|--|--| | Thickness (mm) | 15 | | | | | | μ Dry | 261 | | | | | | μWet | 144 | | | | | | | | Minimum thickness | Class (excluding floorings) ^g | Class (Flooring) ^h | |--|--|----------------------------|--|-------------------------------| | | Without an air gap
behind the panel ^{abef} | 9 | D-s2,d0 | D _{fl} ,s1 | | | With a closed or open air gap ≤ 22mm behind the panel ^{cef} | 9 | D-s2,d2 | - | | ² Reaction to fire (see notes to table for field of application details and associated documentation references) | Closed air gap
behind the panel def | 15 | D-s2,d0 | D _{fl} ,s1 | | | With an open air gap behind the panel def | 18 | D-s2,d0 | D _{fl} ,s1 | | | Any end use ef | 3 | E | E _{fl} | | | a -Mounted without ar | n air gap directly against | class A1 or A2-s1, d0 pro | oducts with minimum | density 10kg/m3 or at least class D-s2, d2 products with minimum density 400 kg/m3. - b -A substrate of cellulose insulation material of at least class E may be included if mounted directly against the wood-based panel, but not for floorings. - c -Mounted with an air gap behind. The reverse face of the cavity shall be at least class A2-s1, d0 products with minimum density 10 kg/m3. - d -Mounted with an air gap behind. The reverse face of the cavity shall be at least class D-s2, d2 products with minimum density 400 kg/m3. - e -Veneered, phenol- and melamine-faced panels are included for class excl. floorings. - f -A vapour barrier with a thickness up to 0,4 mm and a mass up to 200 g/m² can be mounted in between the wood-based panel and a substrate if there are no air gaps in between. - g -Class Provided for in Table 1 of the Annex to decision 2000/147/EC. - h -Class Provided for in Table 2 of the Annex to decision 2000/147/EC . ## **NOTES TO TABLE** 1-Taken from EN 12369-1:2001 2-Reaction to fire classes from Table 1 of Commission Decision 2003/43/EC of January 2003 (OJEU L13 of 18.1.2003) corrected by Corrigendum (OJEU L33 of 8.2.2003) and amended by Commission decision 2007/348/EC of May 2007 (OJEU L131 of 23-05-2007); also reproduced in Table three of EN 13986:2004+A1:2015 for wood-based panels installed according to CEN/TR 12872 - 3-Taken from Table 10 of EN 13986:2004+A1:2015 - 4-Taken from Eurocode 5 EN 1995-1-1 2004+A2:2014 5-Embedment strenght can be calculated according to EN 1995-1-1 2004+A2:2014, by taking the OSB panel thickness (t) and the diameter of the used fastener (d) in account: $f_{h,k} = 65 d^{-0.7} t^{0.1}$