| UK
CA | |------------------------------------| | West Fraser Europe nv | | Eikelaarstraat 33 | | 3600 Genk | | Belgium | | DoP ref: UKOSB3DoPv1 | | EN 13986:2004 +A1:2015 | | 0836 | | 21 | | E1 | | OSB/3 (EN300) 6mm to 32mm | | SterlingOSB zero, OSB3 | | Structural use in humid conditions | | Essential characteristics | Performance | | | | | | | | | | | | | | |---|-------------|-----------------|------------|------|----------|------|---------------------------------|-----|-------------------------|-----------------------|------------------------|------|-----------------|---------| | Thickness range (mm) | 6 to 10 | | >10 to <18 | | 18 to 25 | | >25 to 32 | | 15 T&G
600/400/300mm | | 18 T&G
600mm | | 22 T&G
600mm | | | | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | | 0 - 90 | 0- | 90 | 0-9 | 0 | | ¹ Characteristic Strength (N/mm ²): | | | | | | | | | | | | | | | | - Bending f _m | 18.0 | 9.0 | 16.4 | 8.2 | 14.8 | 7.4 | NPD | NPD | 16.4 | 8.2 | 14.8 | 7.4 | 14.8 | 7.4 | | - Compression f_c | 15.9 | 12.9 | 15.4 | 12.7 | 14.8 | 12.4 | NPD | NPD | 15.4 | 12.7 | 14.8 | 12.4 | 14.8 | 12.4 | | - Tension f_t | 9.9 | 7.2 | 9.4 | 7.0 | 9.0 | 6.8 | NPD | NPD | 9.4 | 7.0 | 9.0 | 6.8 | 9.0 | 6.8 | | - Panel Shear $f_{ u}$ | 6 | .8 | 6 | .8 | 6. | .8 | N | IPD | 6.8 | | 6.8 | | 6.8 | | | - Planar shear f_r | 1 | 1.0 1.0 1.0 NPD | | 1.0 | | 1.0 | | 1.0 | | | | | | | | ¹ Mean Stiffness (MOE)
(N/mm²):
- Tension <i>E_t</i> | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | NPD | NPD | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | | - Compression E _c | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | NPD | NPD | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | | - Bending E _m | 4930 | 1980 | 4930 | 1980 | 4930 | 1980 | NPD | NPD | 4930 | 1980 | 4930 | 1980 | 4930 | 1980 | | - Panel Shear G _v | 10 | 80 | 10 | 80 | 10 | 80 | N | IPD | | 1080 | 10 | 80 | 108 | I
30 | | - Planar Shear <i>G</i> _r | 5 | 0 | 5 | 0 | 5 | 0 | N | IPD | | 50 | 5 | 0 | 50 |) | | Punching Shear, Characteristic strength under point load F _{max,k} (kN) (for floors and roofs) | NI | PD | NI | PD | NF | PD | N | IPD | 1.68, | /1.85/1.78 | 2. | 25 | 3.0 | 14 | | Punching Shear, Mean
stiffness under point load,
R (N/mm²)
(for floors and roofs) | NI | PD | NI | PD | NF | PD | N | IPD | 190 | /333/514 | 26 | 69 | 44 | 5 | | Characteristic serviceability strength | NI | PD | NI | PD | NF | חי | N | IPD | 1 67 | /1.71/1.78 | 2 | 20 | 2.8 | :1 | | under point load F _{Ser,k} (kN) (for floors and roofs) | NPD | | NPD | | INFD | | NFD | | 1.07/1.71/1.70 | | 2.20 | | 2.81 | | | Soft Body Impact
resistance
(Floor/roofs/Walls) | NI | PD | NPD | | NPD NPD | | Impact
Class 1
Pass Floor | | Cla | oact
ss 1
Floor | Impa
Clas
Pass F | s 1 | | | | | | | | | | 1 | 1 | | | | |---|-------------------|---|----------|-------------|-------|-------|---------------|--|--|--| | Racking resistance
Characteristic Strength
F _{Rd,max,k} (N)
(for walls) | NPD | | | | Racking resistance
Mean Stiffness R _{mean}
(N/mm)
(for walls) | NPD | | | | ⁵ Embedment strength | | Calculation according to EN 1995-1-1 (8.22) | | | | | | | | | | f _h (N/mm²) Release of formaldehyde | E1 | | | | | | | | | | | Release (content) of | | | | | | | | | | | | pentachlorophenol (PCP) | ≤5ppm | | | | Airborne sound insulation (surface mass) R (dB) | NPD | | | | ³ Sound absorption,
Frequency range 250Hz to
500Hz (α) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | ³ Sound absorption,
Frequency range 1000Hz to
2000Hz (α) | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | | | | | Thermal conductivity λ (W/m.K) | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | | | | Air Permeability (Δp =50Pa) according to EN 12114, V_0 (m³/h m²) | NPD | | | | - 0 (/ / | | | Durabi | lity | | | | | | | | Internal bond (N/mm²) | 0.34 | 0.32 | 0.30 | 0.29 | 0.32 | 0.32 | 0.30 | | | | | Swelling in thickness (%) | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | | | Moisture resistance
Internal bond after boil
test (N/mm²) | NPD | | | | Internal bond after cyclic test (N/mm²) | NPD | | | | Bending strength after cyclic test – major axis (N/mm²) | 9 | 8 | 7 | 6 | 8 | 8 | 7 | | | | | ⁴ Mechanical
(Creep k _{def})
service class 1 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | | | | ⁴ Mechanical
(Creep k _{def})
service class 2 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | | | | | Mechanical (Duration of | Action Mode | | | | | | | | | | | load k _{mod}) | Permanent Lo | | ong Term | Medium Term | | ln: | Instantaneous | | | | | ⁴ Service Class 1 | 0.4 | | 0.5 | 0.7 | 0.9 | | 1.1 | | | | | ⁴ Service Class 2 | 0.3 | | 0.4 | 0.55 0.7 | | 0.9 | | | | | | Biological | Use classes 1 & 2 | | | | | | | | | | | | 000 0.00000 1 & 2 | | | | | | | | | | | Thickness range (mm) | 6 to 10 | >10 to <18 | 18 to 25 | >25 bis 32 | | | | | |----------------------|---------|------------|----------|------------|--|--|--|--| | Avg. Dens. (kg/m³) | >= 600 | | | | | | | | | | Watervapourtransmission according to EN 12572:2001 | | | | | | | |----------------|--|--|--|--|--|--|--| | Thickness (mm) | 15 | | | | | | | | μDry | 125 | | | | | | | | μWet | 82 | | | | | | | | | | Minimum thickness | Class (excluding floorings)g | Class (Flooring) ^h | | | | |---|---|-------------------|------------------------------|-------------------------------|--|--|--| | | Without an air gap
behind the panel ^{abef} | 9 | D-s2,d0 | D _{fl} ,s1 | | | | | | With a closed or open air gap ≤ 22mm behind the panel cef | 9 | D-s2,d2 | - | | | | | ² Reaction to fire
(see notes to table for field of | Closed air gap behind
the panel def | 15 | D-s2,d0 | D _{fl} ,s1 | | | | | | With an open air gap
behind the panel ^{def} | 18 | D-s2,d0 | D _{fl} ,s1 | | | | | | Any end use ef | 3 | E | Efl | | | | | application details and associated documentation references) | a -Mounted without an air gap directly against class A1 or A2-s1, d0 products with minimum density 10kg/m3 or at least class D-s2, d2 products with minimum density 400 kg/m3. b -A substrate of cellulose insulation material of at least class E may be included if mounted | | | | | | | - directly against the wood-based panel, but not for floorings. - c -Mounted with an air gap behind. The reverse face of the cavity shall be at least class A2-s1, d0 products with minimum density 10 kg/m3. - d -Mounted with an air gap behind. The reverse face of the cavity shall be at least class D-s2, d2 products with minimum density 400 kg/m3. - e -Veneered, phenol- and melamine-faced panels are included for class excl. floorings. - f -A vapour barrier with a thickness up to 0,4 mm and a mass up to 200 g/m² can be mounted in between the wood-based panel and a substrate if there are no air gaps in between. - g -Class Provided for in Table 1 of the Annex to decision 2000/147/EC. - h -Class Provided for in Table 2 of the Annex to decision 2000/147/EC. ## **NOTES TO TABLE** - 1-Taken from EN 12369-1:2001 - 2-Reaction to fire classes from Table 1 of Commission Decision 2003/43/EC of January 2003 (OJEU L13 of 18.1.2003) corrected by Corrigendum (OJEU L33 of 8.2.2003) and amended by Commission decision 2007/348/EC of May 2007 (OJEU L131 of 23-05-2007); also reproduced in Table three of EN 13986:2004+A1:2015 for wood-based panels installed according to CEN/TR 12872 - 3-Taken from Table 10 of EN 13986:2004+A1:2015 - 4-Taken from Eurocode 5 EN 1995-1-1 2004+A2:2014 - 5-Embedment strenght can be calculated according to EN 1995-1-1 2004+A2:2014, by taking the OSB panel thickness (t) and the diameter of the used fastener (d) in account: $f_{h,k} = 65 d^{-0.7} t^{0.1}$