UK CA
West Fraser Europe nv
Eikelaarstraat 33
3600 Genk
Belgium
DoP ref: UKOSB3DoPv1
EN 13986:2004 +A1:2015
0836
21
E1
OSB/3 (EN300) 6mm to 32mm
SterlingOSB zero, OSB3
Structural use in humid conditions

Essential characteristics	Performance													
Thickness range (mm)	6 to 10		>10 to <18		18 to 25		>25 to 32		15 T&G 600/400/300mm		18 T&G 600mm		22 T&G 600mm	
	0	90	0	90	0	90	0	90		0 - 90	0-	90	0-9	0
¹ Characteristic Strength (N/mm ²):														
- Bending f _m	18.0	9.0	16.4	8.2	14.8	7.4	NPD	NPD	16.4	8.2	14.8	7.4	14.8	7.4
- Compression f_c	15.9	12.9	15.4	12.7	14.8	12.4	NPD	NPD	15.4	12.7	14.8	12.4	14.8	12.4
- Tension f_t	9.9	7.2	9.4	7.0	9.0	6.8	NPD	NPD	9.4	7.0	9.0	6.8	9.0	6.8
- Panel Shear $f_{ u}$	6	.8	6	.8	6.	.8	N	IPD	6.8		6.8		6.8	
- Planar shear f_r	1	1.0 1.0 1.0 NPD		1.0		1.0		1.0						
¹ Mean Stiffness (MOE) (N/mm²): - Tension <i>E_t</i>	3800	3000	3800	3000	3800	3000	NPD	NPD	3800	3000	3800	3000	3800	3000
- Compression E _c	3800	3000	3800	3000	3800	3000	NPD	NPD	3800	3000	3800	3000	3800	3000
- Bending E _m	4930	1980	4930	1980	4930	1980	NPD	NPD	4930	1980	4930	1980	4930	1980
- Panel Shear G _v	10	80	10	80	10	80	N	IPD		1080	10	80	108	I 30
- Planar Shear <i>G</i> _r	5	0	5	0	5	0	N	IPD		50	5	0	50)
Punching Shear, Characteristic strength under point load F _{max,k} (kN) (for floors and roofs)	NI	PD	NI	PD	NF	PD	N	IPD	1.68,	/1.85/1.78	2.	25	3.0	14
Punching Shear, Mean stiffness under point load, R (N/mm²) (for floors and roofs)	NI	PD	NI	PD	NF	PD	N	IPD	190	/333/514	26	69	44	5
Characteristic serviceability strength	NI	PD	NI	PD	NF	חי	N	IPD	1 67	/1.71/1.78	2	20	2.8	:1
under point load F _{Ser,k} (kN) (for floors and roofs)	NPD		NPD		INFD		NFD		1.07/1.71/1.70		2.20		2.81	
Soft Body Impact resistance (Floor/roofs/Walls)	NI	PD	NPD		NPD NPD		Impact Class 1 Pass Floor		Cla	oact ss 1 Floor	Impa Clas Pass F	s 1		

						1	1			
Racking resistance Characteristic Strength F _{Rd,max,k} (N) (for walls)	NPD	NPD	NPD	NPD	NPD	NPD	NPD			
Racking resistance Mean Stiffness R _{mean} (N/mm) (for walls)	NPD	NPD	NPD	NPD	NPD	NPD	NPD			
⁵ Embedment strength		Calculation according to EN 1995-1-1 (8.22)								
f _h (N/mm²) Release of formaldehyde	E1									
Release (content) of										
pentachlorophenol (PCP)	≤5ppm	≤5ppm	≤5ppm	≤5ppm	≤5ppm	≤5ppm	≤5ppm			
Airborne sound insulation (surface mass) R (dB)	NPD	NPD	NPD	NPD	NPD	NPD	NPD			
³ Sound absorption, Frequency range 250Hz to 500Hz (α)	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
³ Sound absorption, Frequency range 1000Hz to 2000Hz (α)	0.25	0.25	0.25	0.25	0.25	0.25	0.25			
Thermal conductivity λ (W/m.K)	0.13	0.13	0.13	0.13	0.13	0.13	0.13			
Air Permeability (Δp =50Pa) according to EN 12114, V_0 (m³/h m²)	NPD	NPD	NPD	NPD	NPD	NPD	NPD			
- 0 (/ /			Durabi	lity						
Internal bond (N/mm²)	0.34	0.32	0.30	0.29	0.32	0.32	0.30			
Swelling in thickness (%)	15	15	15	15	15	15	15			
Moisture resistance Internal bond after boil test (N/mm²)	NPD	NPD	NPD	NPD	NPD	NPD	NPD			
Internal bond after cyclic test (N/mm²)	NPD	NPD	NPD	NPD	NPD	NPD	NPD			
Bending strength after cyclic test – major axis (N/mm²)	9	8	7	6	8	8	7			
⁴ Mechanical (Creep k _{def}) service class 1	1.5	1.5	1.5	1.5	1.5	1.5	1.5			
⁴ Mechanical (Creep k _{def}) service class 2	2.25	2.25	2.25	2.25	2.25	2.25	2.25			
Mechanical (Duration of	Action Mode									
load k _{mod})	Permanent Lo		ong Term	Medium Term		ln:	Instantaneous			
⁴ Service Class 1	0.4		0.5	0.7	0.9		1.1			
⁴ Service Class 2	0.3		0.4	0.55 0.7		0.9				
Biological	Use classes 1 & 2									
	000 0.00000 1 & 2									

Thickness range (mm)	6 to 10	>10 to <18	18 to 25	>25 bis 32				
Avg. Dens. (kg/m³)	>= 600							

	Watervapourtransmission according to EN 12572:2001						
Thickness (mm)	15						
μDry	125						
μWet	82						

		Minimum thickness	Class (excluding floorings)g	Class (Flooring) ^h			
	Without an air gap behind the panel ^{abef}	9	D-s2,d0	D _{fl} ,s1			
	With a closed or open air gap ≤ 22mm behind the panel cef	9	D-s2,d2	-			
² Reaction to fire (see notes to table for field of	Closed air gap behind the panel def	15	D-s2,d0	D _{fl} ,s1			
	With an open air gap behind the panel ^{def}	18	D-s2,d0	D _{fl} ,s1			
	Any end use ef	3	E	Efl			
application details and associated documentation references)	a -Mounted without an air gap directly against class A1 or A2-s1, d0 products with minimum density 10kg/m3 or at least class D-s2, d2 products with minimum density 400 kg/m3. b -A substrate of cellulose insulation material of at least class E may be included if mounted						

- directly against the wood-based panel, but not for floorings.
- c -Mounted with an air gap behind. The reverse face of the cavity shall be at least class A2-s1, d0 products with minimum density 10 kg/m3.
- d -Mounted with an air gap behind. The reverse face of the cavity shall be at least class D-s2, d2 products with minimum density 400 kg/m3.
- e -Veneered, phenol- and melamine-faced panels are included for class excl. floorings.
- f -A vapour barrier with a thickness up to 0,4 mm and a mass up to 200 g/m² can be mounted in between the wood-based panel and a substrate if there are no air gaps in between.
- g -Class Provided for in Table 1 of the Annex to decision 2000/147/EC.
- h -Class Provided for in Table 2 of the Annex to decision 2000/147/EC.

NOTES TO TABLE

- 1-Taken from EN 12369-1:2001
- 2-Reaction to fire classes from Table 1 of Commission Decision 2003/43/EC of January 2003 (OJEU L13 of 18.1.2003) corrected by Corrigendum (OJEU L33 of 8.2.2003) and amended by Commission decision 2007/348/EC of May 2007 (OJEU L131 of 23-05-2007); also reproduced in Table three of EN 13986:2004+A1:2015 for wood-based panels installed according to CEN/TR 12872
- 3-Taken from Table 10 of EN 13986:2004+A1:2015
- 4-Taken from Eurocode 5 EN 1995-1-1 2004+A2:2014
- 5-Embedment strenght can be calculated according to EN 1995-1-1 2004+A2:2014, by taking the OSB panel thickness (t) and the diameter of the used fastener (d) in account:

 $f_{h,k} = 65 d^{-0.7} t^{0.1}$