| UK | |------------------------------------| | | | West Fraser Europe Ltd | | Morayhill | | Dalcross | | Inverness | | Scotland | | IV2 7JQ | | DoP ref: WFOSB3_UKCA_DoPv3 | | EN 13986:2004+A1:2015 | | 0086 | | 21 | | E1 | | OSB3 | | 6mm to 32mm | | Structural use in humid conditions | | Essential characteristics | Performance | | | | | | | | | | | | | | |--|-------------|------|------------|------|----------|------|-----------|-----|----------------------------|------|----------------------------|------|----------------------------|------| | Thickness range | 6 to 10 | | >10 to <18 | | 18 to 25 | | >25 to 32 | | 15 T&G
400mm
centres | | 18 T&G
600mm
centres | | 22 T&G
600mm
centres | | | | 0 | 90 | 0 | 90 | 0 | 90 | 0 | 90 | 0 - 90 | | 0- 90 | | 0-90 | | | ¹Characteristic Strength (N/mm²) - Bending | 18.0 | 9.0 | 16.4 | 8.2 | 14.8 | 7.4 | NPD | NPD | 16.4 | 8.2 | 14.8 | 7.4 | 14.8 | 7.4 | | - Compression f_c | 15.9 | 12.9 | 15.4 | 12.7 | 14.8 | 12.4 | NPD | NPD | 15.4 | 12.7 | 14.8 | 12.4 | 14.8 | 12.4 | | - Tension f_t | 9.9 | 7.2 | 9.4 | 7.0 | 9.0 | 6.8 | NPD | NPD | 9.4 | 7.0 | 9.0 | 6.8 | 9.0 | 6.8 | | - Panel Shear $f_{\scriptscriptstyle V}$ | 6.8 | | 6.8 | | 6.8 | | NPD | | 6.8 | | 6.8 | | 6.8 | | | - Planar shear f_r | 1.0 | | 1.0 | | 1.0 | | NPD | | 1.0 | | 1.0 | | 1.0 | | | ¹ Mean Stiffness values,(MOE)
(N/mm ²)
- Tension <i>E_t</i> | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | NPD | NPD | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | | - Compression E _c | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | NPD | NPD | 3800 | 3000 | 3800 | 3000 | 3800 | 3000 | | - Bending E _m | 4930 | 1980 | 4930 | 1980 | 4930 | 1980 | NPD | NPD | 4930 | 1980 | 4930 | 1980 | 4930 | 1980 | | - Panel Shear G ν | 1080 | | 1080 | | 1080 | | NPD | | 1080 | | 1080 | | 1080 | | | - Compression E _c | 50 | | 50 | | 50 | | NPD | | 50 | | 50 | | 50 | | | Punching Shear Characteristic strength under point load F _{max,k} (kN) (for floors and roofs) | NPD | | NPD | | NPD | | NPD | | 2.64 | | 4.12 | | 4.96 | | | Punching Shear Mean stiffness
under point load, R (N/mm)
(for floors and roofs) | NPD | | NPD | | NPD | | NPD | | 305 | | 489 | | 770 | | | Racking resistance(for walls) Characteristic Strength F _{Rd,max,k} (N) | NPD | | Racking resistance (for walls) Mean Stiffness R _{mean} (N/mm) | NPD | | Soft Body Impact resistance | NI | PD | NPD | | NPD | | NPD | | Impact Class | | Impact Class | | Impact Class | | | Floors/Doofs Wolls | T | | 1 | | 1 | 1 | 1 | | | | |---|---|---------------------------------------|----------------|--|-------------------|---------------------------|---------------------|--|--|--| | Floors/Roofs Walls | | | | | Pass | Pass | Pass | | | | | | | | | | Roof | Floor | Floor | | | | | Embedment strength f _h (N/mm2) | NPD | | | | | | | Minimum th | ickness Class | s (excluding floo | orings)g | Class (Flooring)h | | | | | | Without an a | ir gap behind | | | | 3-7 | | | | | | | | nel ^{abef} | 9 | | D-s2,d0 | | D _{fl} ,s1 | | | | | | With a close | d or open air | | | | | | | | | | | | behind the | 9 | | D-s2,d2 | | - | | | | | | | el ^{cef} | | | | | | | | | | | | p behind the | 15 | | D-s2,d0 | | D _{fl} ,s1 | | | | | | | el ^{def} | | | , | 11// | | | | | | ² Reaction to fire | | oen air gap
e panel ^{def} | 18 | | D-s2,d0 | s2,d0 D _{fl} ,s1 | | | | | | | | d use ^{ef} | 3 | | E | | Efi | | | | | (see notes to table for field of | | | | ıst class A1 or A | 2-s1, d0 product | s with minir | | | | | | application details and | | _ | | | ensity 400 kg/m | | mann acrisity | | | | | associated documentation | | | | | s E may be inclu | | nted directly | | | | | references) | | ood-based pane | | | | | | | | | | - | c -Mounted with an air gap behind. The reverse face of the cavity shall be at least class A2-s1, d0 | | | | | | | | | | | | products with minimum density 10 kg/m3. | | | | | | | | | | | | d -Mounted with an air gap behind. The reverse face of the cavity shall be at least class D-s2, d2 products with minimum density 400 kg/m3. | | | | | | | | | | | | | | | anels are includ | ed for class excl | floorings | | | | | | | | | | | | | unted in between | | | | | | f -A vapour barrier with a thickness up to 0,4 mm and a mass up to 200 g/m² can be mounted in between the wood-based panel and a substrate if there are no air gaps in between. | | | | | | | | | | | | g -Class Provided for in Table 1 of the Annex to decision 2000/147/EC | | | | | | | | | | | | h -Class Provid | led for in Table | 2 of the Annex | to decision 200 | 0/147/EC | _ | | | | | | Water vapour permeability μ | NPD | | | | Release of formaldehyde | E1 | | | | Release (content) of | ≤5ppm | | | | pentachlorophenol (PCP) | _3pp | _3pp | _5pp | _3pp | -3pp | _3pp | _5pp | | | | | Airborne sound insulation | NPD | | | | (surface mass) R (dB) | + | | | | | | | | | | | ³ Sound absorption Frequency range 250Hz to 500Hz (α) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | ³ Sound absorption Frequency | | | | | | | | | | | | range 1000Hz to 2000Hz (α) | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | | | | | Thermal conductivity λ | 0.12 | 0.12 | 0.12 | 0.13 | 0.12 | 0.12 | 0.12 | | | | | (W/m.K) | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | | | | Air Permeability V ₀ (m3/h) | NPD | | | | | • | | Durability | | | | · | | | | | Internal bond (N/mm²) | 0.34 | 0.32 | 0.30 | 0.29 | 0.32 | 0.32 | 0.30 | | | | | Swelling in thickness (%) | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | | | Bending strength after cyclic | | | - | | | | 7 | | | | | test – major axis (N/mm²) | 9 | 8 | 7 | 6 | 8 | 8 | 7 | | | | | ⁴ Mechanical | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | | | | (creep k _{def}) Service class 1 | 1.5 | 1.5 | 1.0 | 1.5 | 1.0 | 1.5 | 1.5 | | | | | ⁴ Mechanical | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | 2.25 | | | | | (creep k _{def}) Service class 2 Mechanical (duration of load | + | | | | | | | | | | | k _{mod}) | | <u> </u> | | Action Mode | T | | | | | | | rmod) | I Dawsanana | Long | Term | Medium Terr | n Shor | t Term | Instantaneous | | | | | | Permanent | LONG | | | | | | | | | | ⁴ Service class 1 | 0.4 | | .5 | 0.7 | | 0.9 | 1.1 | | | | | | | 0 | | | (|).9
).7 | 1.1
0.9 | | | | ## **NOTES TO TABLE** - 1 Taken from EN 12369-1:2001 - 2 Reaction to fire classes from Table 1 of Commission Decision 2003/43/EC of January 2003 (OJEU L13 of 18.1.2003) corrected by Corrigendum (OJEU L33 of 8.2.2003) and amended by Commission decision 2007/348/EC of May 2007 (OJEU L131 of 23-05-2007); also reproduced in Table three of EN 13986:2004+A1:2015 for wood-based panels installed according to CEN/TR 12872 - 3 Taken from Table 10 of EN 13986:2004+A1:2015 - 4 Taken from Eurocode 5 EN 1995-1-1 2004+A2:2014